
Quantum Complexity Theory Sevag Gharibian
Summer 2019, University of Paderborn

Lecture 8: Quantum Interactive Proofs (QIP), semidefinite
programs, and multiplicative weights

“There is one thing stronger than all the armies in the world, and that is an idea whose time has
come.”
— Victor Hugo

Contents

1 The Multiplicative Weights algorithm 1

2 QIP and semidefinite programs 3
2.1 Quantum interactive proofs . 4
2.2 Semidefinite programming . 5
2.3 Quantum interactive proofs as SDPs . 7

3 QIP = PSPACE 9
3.1 The algorithm . 10
3.2 Correctness . 11

Introduction. In this course, we have considered the power of quantum verification systems in the presence
of various types of communication: No communication (BQP), one-way classical communication (QCMA),
and one-way quantum communication (QMA). A natural extension of these studies is to ask: What happens
when the communication is interactive, i.e. back and forth between the prover and verifier? This is roughly
the class QIP, and the high-level aim of this lecture is to study the result that QIP = PSPACE.

Along the way, we will encounter two elegant ideas which have found surprisingly fruitful uses in quantum
information (as the opening quote of this section suggests, it is these ideas whose “time has come”). The first
is the notion of semidefinite programs (SDP), which are a fairly broad class of optimization problems typically
solvable in polynomial-time, and which have become rather ubiquitous in quantum information. The second
is the multiplicative weights (MW) method, which in some sense is the oldest trick in the book in terms
of how humans handle unpredictable situations (at least according to the present instructor). Remarkably,
both these tools come together to prove that polynomially many messages of interaction with a quantum
verifier yields precisely PSPACE.

Organization. We begin in Section 1 with the multiplicative weights algorithm; while the context we
present it in is unrelated to QIP, our discussion will nevertheless hopefully give you an intuition as to how
the method arises. Section 2 then introduces quantum interactive proofs, semidefinite programs, and how
the former can be phrased in terms of the latter. Section 3 finally gives the proof combining all the previous
ingredients to show that QIP = PSPACE. We stress that this lecture is full of deep and fundamental ideas
and tools; the MW method, SDPs, and interactive proofs alone can each fill many lectures many times over.

1 The Multiplicative Weights algorithm

In a nutshell, the Multiplicative Weights (MW) algorithm captures the age-old idea that “if it worked once,
it’s likely to work again”. Typically, the algorithm is introduced in the context of the stock market and stock

1

advisors, but let us focus here on a more troublesome bunch: Professors. Suppose you are a first-year student
entering a Computer Science program at your university, and at a loss as to which of many advanced courses
to choose. Confused, you assemble an A-team of professors, labelled 1 through n, to guide you through this
process. In your first semester, you ask: “Professors, professors, heed my call, which is the fairest course of
them all?” Each professor gives you an answer; but since you’re new to the school, you have no idea whose
advice to take. So in round 1, you pick some professor i1 ∈ [n] uniformly at random, and follow his/her
advice. Once the semester is over, you reflect: Was Professor i’s advice good or bad? If the advice was good,
then once semester 2 starts and you repeat this process, you will naturally be more likely to follow Professor
i’s advice again. The question is: How should you update your probability of following Professor i’s advice
at the end of each semester? It turns out the right answer is “multiplicatively”, and this is precisely where
MW gets its name.

Formal setup and algorithm. Imagine we have a set E of n experts, and T rounds of some process
for which we wish to take the experts’ advice into account. In each round t ∈ [T], we have a probability
distribution pt over E, such that we pick and follow (only) Ei’s advice in round t with probability pti. We
imagine that the environment now assigns a “cost” to each expert i’s choice in round t, denoted −1 ≤ cti ≤ 1.
Absolutely no assumptions are made on how these costs are set by the environment; they may even be set
adversarially.

The MW algorithm is an online algorithm, meaning it tries to make the best choices at each step without
access to future environmental data (i.e. costs cti for future rounds t). Ideally, the goal would be to pick the
“best expert” from the beginning, i.e. the one attaining minimum cost

min
i∈[n]

T∑
t=1

cti,

and follow this expert in each round. This is naturally impossible, but remarkably we can get “close” to
OPT, even if the environment acts adversarially. To formalize this, let ct ∈ [−1, 1]n and pt ∈ [0, 1]n denote
the vectors encoding the cost and probability for all experts in a round t. (Thus, the odds of picking expert
i in round t are pti ∈ [0, 1], and the cost of doing so is cti ∈ [−1, 1].) The expected cost of using distribution
pt in round t is hence

Ct :=

n∑
i=1

ptic
t
i =

〈
ct, pt

〉
,

for 〈a, b〉 the inner product of a and b. The expected cost over all rounds is thus C :=
∑T
t=1 Ct =

∑T
t=1 〈ct, pt〉.

Before stating the algorithm, let us state what it gives us.

Theorem 1. Fix 0 < ε ≤ 1/2. Then, for any expert Ei, after T rounds the MW algorithm obtains expected
cost

C ≤
T∑
t=1

cti +

[
ε

T∑
t=1

∣∣cti∣∣+
lnn

ε

]
.

Remarks. We stress that the right hand side of the bound above holds for any expert Ei; thus, the MW
algorithm is “close” to the best expert in terms of performance. The term in square brackets is the additive
error term; it depends on the magnitude of the costs |cti| incurred by Ei.

The algorithm itself is now stated as Algorithm 1 (yes, it really is this simple).

Exercise. Why is there a division involved in Step 2(a) of Algorithm 1?

Proof of Theorem 1. As done in amortized analysis, it turns out to be useful to study a “potential function”
as a “reference point”: Φt :=

∑
i w

t
i . By giving upper and lower bounds on Φ, we will obtain the claim.

2

Algorithm 1 The Multiplicative Weights algorithm.

1. Fix 0 < ε ≤ 1/2, and give each expert Ei “weight” wti = 1.

2. For t = 1, . . . , T :

(a) Pick expert Ei with probability wti/(
∑
t w

t
i).

(b) Obtain costs ct for round t from the environment.

(c) Update weight of expert Ei as wt+1
i :=

{
wti(1− ε)c

t
i if cti ≥ 0

wti(1 + ε)−c
t
i if cti < 0

.

Upper bound. By definition,

Φt+1 =
∑
i

wt+1
i ≤ wti(1− εcti) = Φt(1− ε

〈
ct, pt

〉
) ≤ Φte−ε〈c

t,pt〉,

where the first inequality follows from the next exercise.

Exercise. Prove that (1∓ ε)±x ≤ (1− εx) when x ∈ [−1, 1] and x ∈ [−1, 0], respectively. Use these facts
to obtain the first inequality above.

Exercise. Use the fact that pti = wti/Φ
t to show the second equality above.

Exercise. Prove that e−x ≥ 1− x for x ∈ [−1, 1]. Use this to prove that last inequality above. (Hint: You
need to use an assumption we made on the costs cti.)

Since by definition Φ1 := n, it follows that after T steps, ΦT+1 ≤ ne−ε
∑T
t=1〈ct,pt〉, our desired upper bound.

Lower bound. Since the weights wti ≥ 0, we have that for any Ei, ΦT+1 ≥ wt+1
i . Combining the upper

bound above with the following exercise now yields the claim.

Exercise. Prove that for 0 ≤ ε ≤ 1/2, ln(1/(1− ε)) ≤ ε+ ε2 and ln(1 + ε) ≥ ε− ε2.

Exercise. Use the exercise above to prove that ln(wT+1
i) ≥ −ε

∑
i c
t
i − ε2

∑
i |cti|. Combine this with our

upper bound to obtain the claim.

This completes our discussion of the basic MW method. For a gentle introduction to its extension to
the matrix setting, the reader is referred to the thesis of Kale, available at http://www.satyenkale.com/

papers/thesis.pdf. In the interest of time, we shall instead jump right into QIP and semidefinite programs.

2 QIP and semidefinite programs

Ultimately, our goal is to use a matrix variant of the MW algorithm to show that QIP = PSPACE. To do
so, we first require a definition of quantum interactive proofs, and subsequently an approach for embedding
their maximum acceptance probability into a semidefinite program. These are given in Sections 2.1 and 2.2,
respectively.

3

http://www.satyenkale.com/papers/thesis.pdf
http://www.satyenkale.com/papers/thesis.pdf

2.1 Quantum interactive proofs

Roughly, classical interactive proofs are the natural extension of NP to the setting in which the prover
(which remains computationally unbounded) can now exchange polynomially many rounds of communication
with the verifier (which remains polynomially bounded). Quantumly, the idea is analogous: The quantum
prover (which remains computationally unbounded, with the exception of obeying the laws of quantum
mechanics) now exchanges polynomially many rounds of quantum communiction with the verifier (which is
still computationally bounded). Slightly more formally, we imagine the prover and verifier send a common
quantum “message register” M back and forth, and each take turns applying a local unitary circuit on M
and their private workspace.

Formal definition. To make this intuition formal, we must generalize our definition of a QMA verifier to
an m-round quantum verifier (and analogously, an m-round quantum prover).

Definition 2. (m-round quantum verifier) An m-round quantum verifier is a P -uniform circuit family
Q = {Qn,1, . . . Qn,m}, acting on three registers: An input register A containing x ∈ {0, 1}n, a message
register M consisting of p(n) qubits, and an ancilla or “private” register V consisting of q(n) qubits, for
some polynomials p, q : N 7→ N. We imagine the verifier acts in “rounds”, applying circuit Qn,i in round
i ∈ [m]. Before round 1, the message and private registers are initialized to all zeroes.

Definition 3. (m-round quantum prover) An m-round quantum prover is defined identically to an m-round
verifier, except the circuit family Q = {Qn,1, . . . Qn,m} need not be P-uniform (indeed, the circuits can in be
superpolynomial in size). To help distinguish between verifier and prover, for the latter we label the private
register as P for “prover” (versus V for “verifier”).

Exercise. Why does dropping the P-uniformity condition in Definition 3 capture the notion of a prover
which is limited only by the laws of quantum mechanics?

For brevity, we henceforth drop the input size n when referring to circuits Qn,i. We can now model an
interactive protocol between an m-round verifier and m-round prover in the natural way: Letting {Qi} and
{Ri} denote their respective circuits, the interaction is given by (for simplicity, we omit the A register, as
we may assume without loss of generality that its contents remain fixed to the input x for both parties):

(Qm)V,M (Rm)M,P · · · (Q1)V,M (R1)M,P |0 · · · 0〉V |0 · · · 0〉M |0 · · · 0〉P .

Just as in QMA, the verifier now measures a designated output qubit of register V , say V1, and accepts if
and only if the output is 1.

Exercise. Suppose we wish the interactive protocol to instead begin with a message from the verifier to
the prover; how can we model that in the setup above?

Exercise. Why can we assume without loss of generality that the verifier acts last?

We may now formally define the class QIP.

Definition 4. (Quantum Interactive Proof Systems (QIP)) A promise problem A = (Ayes, Ano, Ainv) is in
QIP if there exists a polynomial m : N 7→ N and m-round quantum verifier satisfying the following for any
input x ∈ {0, 1}n:

• (Completeness/YES case) If x ∈ Ayes, there exists an m-round quantum prover causing the verifier to
accept with probability at least 2/3.

• (Soundness/NO case) If x ∈ Ano, then for all m-round quantum provers, the verifier accepts with
probability at most 1/3.

• (Invalid case) If x ∈ Ainv, the verifier may accept or reject arbitrarily.

4

Magic: Only a constant number of rounds are needed. Remarkably, and in strong contrast to clas-
sical interactive proofs, it turns out quantumly that the use of polynomially many rounds of communication
in QIP is overkill — it suffices to use just 2 rounds:

(Q2)V,M (R2)M,P (Q1)V,M (R1)M,P |0 · · · 0〉V |0 · · · 0〉M |0 · · · 0〉P .

In fact, we may even assume the only message from the verifier to the prover (modelled by Q1) is an unbiased
coin flip (i.e. not conditioned on the action of R1). This is known as a “Quantum Arthur-Merlin” game,
and in the context of QIP, we may assume the accompanying completeness and soundness parameters are 1
and 1/2 + ε for any fixed ε > 0, respectively. For the remainder of this lecture, we shall henceforth use this
Quantum Arthur-Merlin characterization of QIP.

Exercise. Since Q1 above is just an unbiased coin flip independent of R1, at first glance it may seem one
can simply remove R1 altogether. Why might this be a bad idea?

2.2 Semidefinite programming

Linear programming and its generalization, semidefinite programming, are both misnomers: Neither of them
has anything to do “programming” in the usual computer science sense. Both actually refer to a fairly broad
class of optimization problems with a wide variety of applications. Generally, a linear program (LP) attempts
to maximize a given linear function f : Rn 7→ R, subject to a set of given linear inequality constraints. The
main syntactic difference in generalizing from an LP to a semidefinite program (SDP) is that now the
variables are not vectors in Rn, but Hermitian matrices in L(Cn), and hence the correct notion of inequality
is the generalized inequality � denoting the positive semidefinite ordering (i.e. A � B if and only if A− B
is positive semidefinite).

Exercise. Is I � 2I? How about I � X for Pauli X? I � 2X? If A � B and C � D, is A+ C � B +D?

Exercise. If A � 0 and B � 0, is it always true that AB � 0? (Hint: A necessary condition for AB to be
positive semidefinite is for it to be Hermitian.)

Standard form for SDPs. We begin by stating the standard form for SDPs we shall use. To do so, we
need three things: (1) A cost matrix C ∈ Herm(X), (2) a constraint matrix D ∈ Herm(Y), and (3) a linear
constraint map Ψ : Herm(X) 7→ Herm(Y). Here, X and Y are fixed complex vector spaces. The (primal)
semidefinite program is then given by:

Primal problem (P)

supremum: Tr(CX)

subject to: Ψ(X) � D,
X � 0,

Dual problem (D)

infimum: Tr(DY)

subject to: Ψ∗(Y) � C,
Y � 0.

This may look cryptic at first sight, so let us first break down some facts about the primal problem, P :

• The variable being optimized over is X ∈ Herm(X). The feasible region is the set of all “valid
assignments”, i.e. all X satisfying the given constraints, Ψ(X) � D and X � 0.

• The objective function being maximized, Tr(CX), is linear in X. In analogy with Section 1, we may
use inner product notation 〈C,X〉 := Tr(C†X) (recall C is Hermitian in our setting).

Exercise. Prove that the objective function is indeed linear in X.

5

Exercise. The function 〈A,B〉 := Tr(A†B) is sometimes called the Hilbert-Schmidt inner product
for matrices. Why does this name make sense? (Hint: How is this function really just an example of
the usual vector inner product?)

• The map Ψ must be Hermiticity preserving, i.e. map Hermitian operators to Hermitian operators.

Exercise. Why is the requirement that Ψ be Hermiticity preserving necessary?

• Once an SDP is in the standard form P above, one can formulate the corresponding dual problem, D,
which is also an SDP. We shall say more about duality shortly, but for now let us define the adjoint
map Ψ∗ : Herm(Y) 7→ Herm(X); it is the unique linear map satisfying 〈A,Ψ(B)〉 = 〈Ψ∗(A), B〉 for all
A ∈ L(Y), B ∈ L(X).

Exercise. Let Ψ : Cn 7→ C be the trace function. What is Ψ∗?

The topic of semidefinite programming, and its generalization to convex optimization, fills up entire text-
books. Here, we shall aim to convey the basic intuition and facts needed for studying QIP via some examples
and key statements.

Examples and optimal solutions. As with most things in life, you have actually been using SDPs
without knowing it. The simplest example of an SDP which you know is the computation of the largest
eigenvalue of a Hermitian matrix C ∈ Herm(Cn), which can be written:

Primal problem (P)

supremum: Tr(CX)

subject to: Tr(X) ≤ 1

X � 0,

Dual problem (D)

infimum: y

subject to: y · I � C,

Exercise. What space does dual variable y live in?

Exercise. Technically, our standard definition of the dual problem required y ≥ 0. How can we rewrite D
above to be in standard form? (Hint: Any a ∈ R can be written a = b− c for some b, c ≥ 0.)

Two comments: (1) It is not necessary to always put an SDP into standard form; this is more for
convenience, as it makes computation of the dual SDP easier. (Certain numerical SDP solvers may also
request it.) Generally speaking, an SDP is any optimization (min or max) of a linear function, subject to
linear inequality constraints and non-negativity constraints (with respect to �). (2) The use of supremum in
P above is unnecessary; in this case, the optimal value is attained and is precisely λmax(C). More generally,
however, this is not true, as the following example demonstrates.

infimum: x

subject to:

(
x 1
1 y

)
� 0

x, y ∈ R

Exercise. Prove that x = 0 is not in the feasible region. Conclude that 0 as an objective function value is
not attainable. (Hint: Use the Determinant Test, which states for a 2 × 2 matrix that A � 0 if and only if
A11, A22 ≥ 0 and det(A) ≥ 0.)

Exercise. Prove that for any x > 0, there exists a choice of y so that (x, y) is a feasible solution to the
dual problem. Conclude that the use of infimum is necessary in this example.

6

Duality theory. You may be wondering why we’ve been dragging around the dual problem for each
primal problem we’ve stated. Let p and d denote the optimal values for a primal and corresponding dual
SDP, respectively. These values satisfy an amazing property known as weak duality :

p ≤ d.

This immediately gives a powerful use for SDPs. Suppose you have some maximization problem Π which
is difficult to solve analytically (for example, this might encode the optimal cheating probability for a
cryptographic protocol). If you can formulate Π (or a relaxation of it) as an SDP, then it is “easy” to give an
upper bound on Π — any feasible solution to the dual SDP will, by weak duality, yield some upper bound
on Π. Note, crucially, that this does not require solving an SDP; one can often make a clever guess as to
what a good dual solution should be.

Of course, the natural question is whether this upper bound can be made tight, i.e. is it true that p = d?
This is called strong duality. In general, strong duality unfortunately does not hold. However, a simple
sufficient condition for strong duality is Slater’s constraint qualification, which states that if (say for the
primal) there is a strictly feasible solution X (i.e. Φ(X) ≺ D and X � 0), then strong duality holds.

Exercise. Consider the non-standard dual program below. Show that it does not satisfy strong duality.

infimum: x

subject to:

 0 x 0
x y 0
0 0 x+ 1

 � 0

x, y ∈ R

Runtime. It is a common fallacy that “SDPs can be solved in polynomial time”. While the spirit of
the statement is true, in order to actually attain a poly-time solution, two constraints must be met: The
feasible region must be contained in a ball of radius R, and must contain a ball of radius r. The runtime
of the Ellipsoid Algorithm is then polynomial in the input size (i.e. encodings of C,Ψ, D; we assume this
encoding size scales at least as the dimension of the space C acts on), logR, log(1/r), and log(1/ε), where
ε is the additive error in the optimal objective function value we are willing to tolerate. In practice, these
conditions are typically met. Note also that while the runtime of the Ellipsoid Algorithm is often cited in
theoretical algorithmic results relying on SDPs, in practice more stable and modern methods such as Interior
Point Methods are deployed. In this lecture, we will see an alternative method for solving certain SDPs; the
matrix multiplicative weights method.

2.3 Quantum interactive proofs as SDPs

Having introduced quantum interactive proofs and SDPs, we can now formulate the former as an example
of the latter. As stated in Section 2.1, we shall assume a 3-message Quantum Arthur-Merlin protocol, which
suffices to capture QIP. The setup is as follows:

1. The prover (Merlin) sends the verifier (Arthur) a density operator σ in register M1 (for “message 1”).

2. Arthur has a pair of measurements {P0, I − P0} and {P1, I − P1} in mind, for 0 � P0, P1 � I and
acting on joint space M1 ⊗M2. Arthur chooses a uniformly random bit b ∈ {0, 1}, and sends it to
Merlin.

3. Merlin sends quantum register M2 (for “message 2”) to Arthur.

4. Arthur performs measurement {Pb, I − Pb} on the message registers M1⊗M2, and accepts if and only
if the outcome is Pb.

7

Formally, one can model the acceptance POVM for Arthur’s random measurement via operator

Q := |0〉〈0|C ⊗ (P0)M1,M2
+ |1〉〈1|C ⊗ (P1)M1,M2

.

To see why, note that conditioned on bit flip b, Merlin prepares joint state ρb ∈ L(M1⊗M2). In other words,
the density operator prepared by Merlin is

X :=
1

2
|0〉〈0|C ⊗ (ρ0)M1,M2 +

1

2
|1〉〈1|C ⊗ (ρ1)M1,M2 . (1)

Exercise. Show that the probability of Arthur accepting is Tr(QX) = 1
2 (Tr(P0ρ0) + Tr(P1ρ1)).

Of course, ρ0 and ρ1 cannot be arbitrary — in step 1 of the protocol, Merlin committed some state σ on
space M1, which remains untouched throughout the remainder of the protocol. Thus, it must be that both
possible end states ρ0 and ρ1 agrees on this “commitment space” M1, i.e.

TrM2
(ρ0) = TrM2

(ρ1) = σ.

Exercise. Consider any pair of purifications |ψ0〉AB , |ψ1〉AB of some density operator σB . Prove that there

exists a unitary UA such that (UA ⊗ IB)|ψ0〉〈ψ0|AB(U†A ⊗ IB) = |ψ1〉〈ψ1|AB . Conclude that the restriction
to fixing σ on the commitment space M1 above is without loss of generality (i.e. for any pair of pure states
|ψ0〉 and |ψ1〉 Merlin wants to prepare on M1⊗M2, he may do so (possibly inefficiently), as long as |ψ0〉 and
|ψ1〉 agree on their reduced state σ on M1).

With these observations in hand, we can state the primal and dual SDPs capturing our interactive
protocol, where for convenience we have moved the factor of 1/2 from X to Q:

Primal problem (P)

maximize: Tr(QX)

subject to: TrM2(X) � IC ⊗ σM1

Tr(σ) = 1

σM1
� 0

XC,M1,M2
� 0

Dual problem (D)

infimum: ‖TrC(Y) ‖∞
subject to: YC,M1 ⊗ IM2 � Q,

YC,M1 � 0.

Again, let us break down the primal SDP:

• The constraints Tr(σ) = 1 and σ � 0 ensure σ is a density operator.

• Ideally, we wish to force X to be of the form in Equation (1) (but without the 1/2), which is block
diagonal with respect to C:

X =

(
ρ0 0
0 ρ1

)
.

In principle, we could explicitly enforce this by having separate variables for ρ0 and ρ1; however, since
Q is also block diagonal with respect to C, the off-diagonal blocks of X do not alter the value of the
objective function. Thus, without loss of generality the optimal X sets the off-diagonal blocks to 0
(this technically requires the following exercise).

Exercise. Prove that if

(
A B
B† C

)
� 0, then

(
A 0
0 C

)
� 0. Why is this exercise needed in

assuming the off-diagonal blocks of X are 0?

8

Exercise. Write Q in block form with respect to register C, and confirm it is block-diagonal.

• We must enforce that ρ0 and ρ1 have reduced state σ on M1. To see why the SDP captures this, we
require the following exercise.

Exercise. Prove in Equation (1) that tracing out M1 yields IC ⊗ σM1
, assuming ρ0 and ρ1 have

reduced state σ on M1 (and omitting the 1/2 factor).

This almost explains the last primal SDP constraint, TrM2
(X) � IC⊗σM1

— here we have an inequality
without loss of generality (as opposed to an equality), since any feasible solution to the inequality can
be “boosted” to make the inequality tight, while only increasing the objective function value.

Exercise. Prove the claim above: Suppose TrM2
(X) � IC ⊗ σM1

but TrM2
(X) 6= IC ⊗ σM1

. Give
a new operator X ′ such that TrM2(X) = IC ⊗ σM1 and Tr(QX ′) ≥ Tr(QX). (Hint: By assumption,
IC ⊗ σM1 − TrM2(X) � 0.)

• Finally, we have quietly replaced our use of supremum with maximum.

Exercise. Prove that Slater’s constraint qualification holds, implying strong duality holds for P .

Some final massaging. Just as applying a unitary change of basis in our analysis of the Quantum Cook-
Levin theorem helped with its analysis, here it turns out to be useful to also perform an appropriate change
of variables. The final SDP we obtain is

Primal problem (P)

maximize: Tr(X)

subject to: Φ(X) � IC ⊗ σM1

Tr(σ) = 1

σM1
� 0

XC,M1,M2
� 0

Dual problem (D)

infimum: ‖TrC(Y) ‖∞
subject to: Φ∗(YC,M1

) � IC,M1,M2

YC,M1
� 0,

where we define Φ : L(C ⊗M1 ⊗M2) 7→ L(C ⊗M1) as

Φ(X) := TrM2
(Q−1/2XQ−1/2), (2)

with adjoint map Φ∗ : L(C ⊗M1) 7→ L(C ⊗M1 ⊗M2) as Φ∗(Y) = Q−1/2(Y ⊗ IM2)Q−1/2. Henceforth, P
and D will always refer to this primal and dual problem, respectively.

3 QIP = PSPACE

We are now in a position to show that QIP = PSPACE. One direction of this equality is “trivial”, in that
QIP ⊇ IP, for IP the classical analogue of QIP, which is known to equal PSPACE. Thus, the non-trivial
direction is the containment QIP ⊆ PSPACE.

9

A bit of interpretation and context. On the one hand, the statement QIP = PSPACE = IP is some-
what disappointing, in that as far as (single-prover) interactive proofs are concerned, quantum resources
add no power. On the other hand, it may be interpreted as saying that interactive proofs are themselves so
powerful that additional resources such as quantum computation add nothing new to the picture. It is worth
noting, however, that remarkably, this state of affairs is only the case for single-prover interactive proofs. If
we move to multiple prover interactive proofs (i.e. MIP, with multiple provers who may not communicate
with each other once the protocol starts), it is known that classically MIP = NEXP, whereas quantumly
MIP∗ ⊇ NEEXP (you read that right; that’s non-determenistic doubly exponential time)! Here, MIP∗ is
MIP but where the provers are allowed to share entanglement before the protocol starts.

We begin by stating the algorithm which allows us to put QIP in PSPACE in Section 3.1. Correctness
is shown in Section 3.2.

3.1 The algorithm

Before stating the algorithm, we sketch why it will imply containment of QIP in PSPACE.

Connection to PSPACE. In Section 2.3, we showed how to exactly capture the acceptance probability
of a 3-message Quantum Arthur-Merlin game (and hence QIP) via an SDP P . In principle, one can then
try to apply the Ellipsoid method to solve P , which would require time polynomial in the dimension of the
matrices involved, such as Q. Unfortunately, Q has dimension exponential in the number of qubits, n, and
so the best the Ellipsoid method could give us is containment in EXP.

Exercise. Why is the dimension of Q exponential in n?

We hence need an alternate approach for solving P . To begin, what we certainly can do in PSPACE is
produce explicit descriptions of the matrix Q.

Exercise. Convince yourself that Q can be expressed exactly using a circuit of size exponential in n and
depth polynomial in n. This class is called NC(poly), and formally requires the circuits be generated by a
polynomial-space TM. It is known that NC(poly) = PSPACE.

Next, given a matrix M of dimension d × d, it turns out one can also compute common matrix operations
on M using circuits of size poly(d) and depth polylog(d); this includes, for example, matrix powers (Mk),
matrix exponentials (eM), and spectral decompositions. The corresponding complexity class is called NC,
and formally requires all circuits to be generated by a log-space TM. (Intuitively, one can think of NC as
the log-depth analogue of P.) This means that after computing the explicit matrix representation for Q in
PSPACE above, we can then do things like take the spectral decomposition of Q in PSPACE as well. In other
words, if we could just come up with an algorithm for solving SDP P which relies solely on the application
of common matrix operations to Q, then we could put the entire thing into PSPACE. This is precisely what
the matrix analogue of the multiplicative weights method allows us to do.

Statement of the algorithm. The idea for solving SDP P via the MW method is analogous to Section 1.
Let us restate the SDP and its dual for convenience first.

Primal problem (P)

maximize: Tr(X)

subject to: Φ(X) � IC ⊗ σM1

Tr(σ) = 1

σM1
� 0

XC,M1,M2
� 0

Dual problem (D)

infimum: ‖TrC(Y) ‖∞
subject to: Φ∗(YC,M1

) � IC,M1,M2

YC,M1
� 0,

10

for Φ(X) := TrM2(Q−1/2XQ−1/2), Φ∗(Y) = Q−1/2(Y ⊗ IM2)Q−1/2, and

Q :=
1

2
(|0〉〈0|C ⊗ (P0)M1,M2

+ |1〉〈1|C ⊗ (P1)M1,M2
) .

There are two primal variables in play: X and σ. We have no idea what they should be set to, so just as
in Section 1, we start with a random guess by setting both to the maximally mixed state. In each iteration,
we check “how badly” the constraint IC ⊗ σM1

− TrM2
(X) � 0 is violated, and update our guesses for X

and σ accordingly. For clarity, the actual implementation, given below, differs somewhat from this, but this
is the basic spirit. The variables roughly ρ and ζ play the roles of X and σ, respectively (the actual choices
of X and σ for P will be slight modifications of the final values of ρ and ζ).

Algorithm 2 Multiplicative Weights for QIP

1. For brevity, define N = dim(C ⊗M1 ⊗M2) and M = dim(M1).

2. Set parameters γ = 4/3, ε = 1/64, δ = ε/(2
∥∥Q−1

∥∥
∞), T = d4 logN/(ε3δ)e.

3. Set initial states ρ0 = W0/N for W0 = IC⊗M1⊗M2
and ζ0 = Z0/M for Z0 = IC .

4. For t = 0, . . . , T :

(a) (Check constraint violation) Let Πt project onto the space spanned by the eigenvectors of Φ(ρt)−
γIC ⊗ ζt with non-negative eigenvalues. Set βt = Tr(Φ(ρt)Πt).

(b) If βt ≤ ε, accept.

(c) (Update current solution) Set

ρt+1 = Wt+1/Tr(Wt+1) for Wt+1 = e
−εδ

∑t
j=0 Φ∗

(
1
βj

Πj
)

ζt+1 = Zt+1/Tr(Zt+1) for Zt+1 = e
εδ
∑t
j=0 TrC

(
1
βj

Πj
)
.

5. Reject.

It is worth stressing that Algorithm 2 does not directly output a solution (X,σ) to SDP P . Instead, given
its output (ρ, ζ), what we can do is the following: If Algorithm 2 accepts, then we can extract a “good”
feasible solution (X,σ) for P from (ρ, ζ) which convinces us we are in a YES case. Conversely, if Algorithm 2
rejects, we can construct a “good” feasible dual solution Y for D which convinces us we are in a NO case
(recall that any dual feasible solution upper bounds the value of the primal SDP from Section 2.2).

3.2 Correctness

We now show correctness of Algorithm 2. Let A = (Ayes, Ano, Ainv) denote a QIP promise problem, which
recall has a 3-message Quantum Arthur-Merlin game with verifier V . For any input x ∈ {0, 1}∗, we may
assume that if x ∈ Ayes, V accepts with certainty, and if x ∈ Ano, V accepts with probability at most 1/2+ ε
for (say) ε = 1/64. Thus, if x ∈ Ayes, the primal SDP P and (by strong duality) dual SDP D in Section 2.3
achieve value 1, and if x ∈ Ano, they achieve at most 1/2 + 1/64.

Theorem 5. If Algorithm 2 accepts, then P has optimal value strictly larger than 5/8. If Algorithm 2
rejects, then P has optimal value strictly smaller than 7/8.

Exercise. Why does Theorem 5 show that Algorithm 2 correctly decides our QIP instance x?

We break the proof down into lemmas for the YES and NO cases.

11

Lemma 6. (YES case) If Algorithm 2 accepts, then P has optimal value strictly larger than 5/8.

Proof. Let ρ, ζ, Π, and β denote the final values to ρt, ζt,Πtβt set by Algorithm 2. We claim that

X =
1

γ + 2β
ρ σ =

1

γ + 2β
[γζ + 2TrC(ΠΦ(ρ)Π)]

is a feasible solution to P with value strictly larger than 5/8.

Exercise. Prove that the objective function value, Tr(X), is indeed strictly larger than 5/8.

Exercise. Show that σ is a density operator.

It thus remains to show that the constraint Φ(X) � IC ⊗ σM1
is satisfied. For this, rearrange

Φ(X)− γIC ⊗ ζ � Π(Φ(X)− γIC ⊗ ζ)Π � ΠΦ(X)Π � 2IC ⊗ TrC(ΠΦ(X)Π),

where the first and second inequalities hold by the definition of Π, and the third by the fact that MAB �
2IA ⊗ TrA(M) for any MAB � 0 and A = C2.

Lemma 7. (NO case) If Algorithm 2 rejects, then P has optimal value strictly smaller than 7/8.

Proof. We claim that a dual feasible solution to D is

Y =
1 + 2ε

T

T−1∑
t=0

1

βt
Πt,

and that Y attains dual objective function value ‖TrC(Y) ‖∞ < 7/8; the lemma then holds by weak duality.
As the proofs of both claims use a similar approach, we show only feasibility here.

Y is dual feasible. The proof approach is reminiscent of that of Theorem 1 (the classical MW algorithm);
it turns out the correct “potential function” to use now, however, is Tr(WT). We show upper and lower
bounds on Tr(WT) to establish that Φ∗(YC,M1

) � IC,M1,M2
. Equivalently, we show λmin(Φ∗(YC,M1

)) ≥ 1.

Exercise. Show that Y � 0.

Lower bound on Tr(WT). We begin with the lower bound, which is simpler, and follows from the same
principle as in the classical lower bound of Theorem 1 — the sum of non-negative numbers

∑
i wi is at least

as large as any one number wi.

Exercise. Prove that

Tr(WT) = Tr

(
e
−εδ

∑T−1
j=0 Φ∗

(
1
βj

Πj
))
≥ e−εδλmin

(
Φ∗
(∑T−1

j=0
1
βj

Πj
))
. (3)

Upper bound on Tr(WT). We would like to upper bound

Tr(WT) = Tr

(
e
−εδ

∑T−1
j=0 Φ∗

(
1
βj

Πj
))

using an inductive approach similar to the upper bound in the proof of Theorem 1. The problem is
that the exponents Φ∗(Πj/βj) do not pairwise commute; thus we cannot simply factor out the last term
exp(−εδΦ∗(1

βT−1
ΠT−1)) and apply the induction hypothesis. Luckily, since we are interested in the trace of

WT , we are saved by the Golden-Thompson inequality, which states that

Tr
(
eA+B

)
≤ Tr

(
eAeB

)
for Hermitian A,B.

12

Exercise. For any t ∈ 1, . . . , T , use the Golden-Thompson inequality to show that

Tr(Wt) ≤ Tr(Wt−1e
−εδΦ∗(Πt−1/βt−1)). (4)

Now that we’ve isolated the last term in the exponential, we wish to bring its argument δΦ∗(Πt−1/βt−1)
down out of the exponent. For this, we use the fact that for any Hermitian M satisfying 0 � M � I, and
every real r > 0,

erM � I + rerM and e−rM � I − re−rM.

From this, we immediately have that

e−ε[δΦ
∗(Πt−1/βt−1)] � I − εδe−εΦ∗(Πt−1/βt−1), (5)

assuming the result of the following exercise.

Exercise. Prove that ‖ δΦ∗(Πt−1/βt−1) ‖∞ ≤ 1. (Hint: Use submultiplicativity of the spectral norm to
show that ‖Φ∗(Πt−1) ‖∞ ≤

∥∥Q−1
∥∥
∞.)

Exercise. Use Equation (5) and the fact that Wt−1 � 0 to conclude that

Tr(Wt) ≤ Tr(Wt−1)(1− εδe−εTr [ρt−1Φ∗(Πt−1/βt−1)]) = Tr(Wt−1)

(
1− εδe−εTr [Φ(ρt−1)(Πt−1)]

βt−1

)
.

Combining this with the fact that by definition, βt−1 = Tr [Φ(ρt−1)(Πt−1)], and that for all real r, 1+r ≤ er,
we conclude

Tr(Wt) ≤ Tr(Wt−1)e−εδe
−ε
.

Exercise. Use the fact that Tr(W0) = N to obtain our final upper bound,

Tr(WT) ≤ e−Tεδe
−ε+logN . (6)

Combining upper and lower bounds. Combining Equations (3) and (6), we have that

λmin

Φ∗

T−1∑
j=0

1

βj
Πj

 ≥ Te−ε − logN

εδ
.

Exercise. Recalling that Y = 1+2ε
T

∑T−1
t=0

1
βt

Πt, use the fact that e−ε − ε2/4 > 1− ε to complete the proof

of dual feasibility by concluding that λmin(Φ∗(Y)) > 1. (Note the argument to Φ∗ is now Y .)

In conclusion, we have covered a rather long journey for this set of lectures notes, spanning the MW
method, SDPs, interactive proofs, and finally the proof that QIP = PSPACE. Each of these is a fundamental
tool or result in its own right; that they fit together to tell an elegant story is nothing short of remarkable.

13

	The Multiplicative Weights algorithm
	QIP and semidefinite programs
	Quantum interactive proofs
	Semidefinite programming
	Quantum interactive proofs as SDPs

	QIP=PSPACE
	The algorithm
	Correctness

